Cellecta Gets SBIR Grant to Develop Validated CRISPR Library

Cellecta received a Phase I NIH SBIR Grant to develop CRISPR guide RNAs (gRNAs or sgRNAs) for human and mouse genes and then use these to build a knockout library targeting 6,500 key disease-related genes in major signal transduction pathways.

Targeting a gene for knockout using CRISPR requires a short strand of RNA (a "guide" strand) that contains a gene targeting region complementary to part of the target gene sequence, and a binding region for the Cas9 nuclease. While it is generally known how to design sgRNAs, the particular elements and features necessary for effective and specific sgRNA strands has not been well defined. Variations of the targeting region and Cas9 binding domain of sgRNAs, such as the ones below that we tested in individual constructs, have been shown to alter the efficacy of sgRNAs.

In this first phase of the grant, Cellecta plans to test a number of sgRNA structure modifications that have been reported to increase Cas9-sgRNA activity and/or specificity. We will use our expertise in Construction and screening of pooled lentiviral libraries large complex pooled sgRNA libraries to simultaneously analyze the efficiency and specificity of a dozen different sgRNA structures to large numbers of essential targets. The libraries will also include controls to non-essential genes, as well as non-targeting sgRNAs.

Screens using these libraries made of different sgRNA structures to the same set of targets will provide sufficient examples with each structural variant for robust statistical analysis so that the effects of each variation can be reliable assessed. After completing this testing, we will use the most effective sgRNA in designing a CRISPR library targeting key disease-related genes in major signal transduction pathways.

gRNA-tracrRNA-design-comparison-6days

Figure 1. The efficiency of GFP knockout on three gRNAs changes when the complementary targeting sequence is shortened or alternations are made to the Cas9-binding domain ("AT" and "HE"). The variations tested above were described by Chen, et al. (Cell 2013, 155:1479-91) and Fu, et al (Nat. Biotechnol. 2014, 23:279-84).



Also in Cellecta Blog & News

Gene Expression Profiling of Single-Cell Samples: DriverMap Targeted Expression Profiling vs SMART Technology

Single-cell expression analysis provides insights about gene expression and cell heterogeneity at the single-cell level. It enables the elucidation of intracellular gene regulatory networks and intracellular pathways that would otherwise be masked in bulk analysis (Massaia et al., 2018). The DriverMap™ Targeted Gene Expression Profiling (TXP) assay combines highly multiplexed RT-PCR amplification with the depth and precision of Next-Generation Sequencing (NGS) to quantitatively measure gene expression of up to 19,000 target genes in a single assay–even down to the single-cell level.
Read More
Comparing DNA vs. RNA Samples for Immune Repertoire Profiling

Adaptive immunity relies on B and T cells that recognize foreign antigens via hypervariable B cell and T cell receptors (BCRs and TCRs). Diversity among B cell and T cell receptors is primarily produced by V(D)J recombination, which involves the shuffling and joining of the variable (V), diversity (D), joining (J), and constant region (C) gene segments. This results in a diverse repertoire called the adaptive immune repertoire (AIR) that comprises multiple individual clonotypes (sequence) for particular receptor chains.
Read More
Inducible Cas9 Expression in a Single Lentiviral Vector

Introducing Inducible Cas9 Expression in a Single Lentiviral Vector to make cells capable of high Cas9 expression for a limited time during which CRISPR-mediated targeted rearrangements can occur, and then shut off Cas9 expression for downstream assays with the modified cells.
Read More